
1

2

Cognex Designer gives user the ability to user timers, monitors, and shift registers
through the use of Components.

3

Components are reusable objects that provide specific application functionality.
They are separated into Process Components and Utility Components.

Right-click on Components to configure a new component for the application.

4

Clock – display current time. Allows user to input an offset of hour to account for
time zone differences.
High Precision Timer - useful for executing code at very small intervals, with a higher
degree of accuracy. It can be set to an interval of 1 millisecond.
Standard Timer - is most suitable for user-interface updates and other non-critical
items.

5

We can use a timer to constantly send triggers to the camera at a constant interval.
This allows for a presentation mode or a consistent trigger within the application.

Note: Make sure that the Interval is greater than the cycle time otherwise you
will start missing images. We are choosing a large number in this case because
the DS1000 acquisition can take some time.

The new component will now appear in the Explorer tree under Component.

6

Script needs to be written to let the application know what function(s) it should run
when the timer “ticks” to it’s next interval. In this case, we want our sequence to run
so we add the function “$Tasks.Task.Run();” to the timer’s OnClick() sub-routine.

7

Now we need to start the timer as well as stop it. One way is to tie the functionality
to a button.
We cannot use the property parameter Click Command in this case as we need to do
a few things – not just a single command.
Right click of the Button and choose Scripts -> Mouse Click as we want to add a set of
commands when we click on the button.

8

This script is checking to see if the timer is already running.
• If it is, clicking on this button will stop the timer.
• If it is not, clicking the button will start the timer.

9

To switch the text dynamically in the button, we can add the Tag for
$Components.RunContinuously.IsRunning to the Text parameter of the button.
This will change the text depending on whether the timer is running or not.

10

Associating needs to be added to let the system know what should be shown
depending on whether the timer is running or not.

If the timer is not running, then the text “Start Acquiring” will appear to let
the user know to push it to start the sequence.
If the timer is running, then the text “Stop Acquiring” will appear to let the
user know to push the button to stop the automatic acquisition.

Note: Make sure you press the “+” for the second entry so that both states
show under the associations.

11

Now it is set-up that if the timer is running, the button will say “Stop Acquiring”. If the
timer is not running, then the button will say to “Start Acquiring”.

This is not very practical in a our application as we have to move the gantry each
time. In the lab, we will add a signal to let us know to start moving again so that it
appears to be constant.

12

Disk Monitor – monitors disk space on hard drive. Can be configured to return total
capacity, amount used / available, percent used / available. Interval of minutes can be
selected to state how often to check.

Inactivity Monitor – monitors user input and calculates the length of the inactivity
time. The monitor provides a configurable timeout script that can be executed when
the inactivity time exceeds the specified amount.

Shift Register - provides an array of tags of a particular data type. When a new item is
added to the shift register, previous items in the register are shifted in position.
Number of items is inputted when created. The Add() function is used to add the new
data type to the existing array.

13

We are going to create a filmstrip at the bottom of our HMI that will display the last 5
images acquired by the camera. The Data Type being used is VisionPro Image.

We could make it easy and just grab the 2D image though that may not help us with
troubleshooting the application from the HMI.

14

Add 6 VisionPro displays.

Note: Use the Arrange buttons on the taskbar at the top of Cognex Designer
to line up each display, distribute horizontally, and other options to perfect the
position on the HMI

15

Create a new ScriptBlock in the Sequence to add the images to the shift register. The
input argument would be VisionPro.ICogImage and the Return Type would be None.
The creation of the array will be happening in the Script so no additional output is
needed.

16

By attaching it to the PixelFilledImage, we will get the same clean image the other
displays are seeing.

This might assist in trying to troubleshoot potential issues as we see the images
displayed in the filmstrip.

17

Simple and clean.

Every time we run the sequence, we add a PixelFilledImage to the FilmstripRegister.

It operates on a first in, first out (FIFO) method.

18

The next step is to assign the image to each of the displays.

Starting with the one on the left, go to the Subject and use the Tag Browser to
reference the shift register’s 2nd item which is Item1 (zero-based).

The reason we go to the 2nd item is because we are already be displaying the 1st item
(Item0) in the large original display.

Note: VisionPro (as is most Cognex products) is zero based which means the
first item is referenced as Item0. The second would be Item1 and so forth.

Do the same in the next display except choose Item2. Continue do this for each of the
remaining displays so that the right most one is referencing the last available image in
the shift register.

19

Start the application and note the images that are displayed in the filmstrip each time
that an acquisition (or rather Execute Sequence) happens which could be
accomplished through our Run Once button or through our timer button.

20

21

