
1

2

3

4

Coordinate spaces are a way for the account for fixturing and calibration changes to

the pixel image.

It allows for subsequent tools to move with the image or the ability to use real world

measurements. Since the DS1000 series is already using calibrated coordinates

(built into the range image), the calibration section is not needed.

5

Think of the Root space as the pixel image as it is acquired by the camera.

6

The image has been subsampled; automatically adjusted the root so that image
features (such as the "C" in "COGNEX") retained the same locations

The image now has fewer pixels; note that the root grid lines no longer correspond
to the pixel boundaries.

7

VisionPro lets you define any number of additional coordinate systems

Typically, user spaces are used to create and manipulate calibrated spaces and
fixtures

8

Coordinate space trees contain
An image’s root space
All user spaces you created
How all the spaces are related to each other

a.k.a. Transformation

At all times, one space within the tree is the Selected Space for the image

The coordinate system in which all VisionPro tools that operate on an image
Return results
Interpret input data

i.e. regions of interest

Creating a new image through some transformation adds a new coordinate space
to the coordinate space tree

And automatically selects the space as the new image's selected space
name

Allows you to automatically map coordinates from a processed image back to the
original image or vice-versa

9

The Fixture Tool is used to create a fixture coordinate system when you already
have a coordinate transform calculated

In our example, we’ll find our part using PMAlign; it produces a transform in its
results

10

The first part of creating a fixture is to identify a portion of the part to be able to get

translation and rotation information.

Use the existing CogPMAlignTool1 to perform the fixturing step.

11

To implement a CogFixtureTool:

1) Expand the Calibration & Fituring category.

2) Select the CogFixtureTool and drag it under the CogPMAlignTool in the block’s

tool listing.

3) Drag the Image to the InputImage input terminal of the CogFixtureTool.
4) Drag the Results.Item[0].Pose() to the

RunParams.UnfixturedFromFixturedTransform input terminal of the
CogFixtureTool.

Perform the last bit of housekeeping:

1) Drag the OutputImage generated by the CogFixtureTool to the [Outputs] collection
2) Rename the default output name to FixturedImage
3) Verify that a new outgoing score terminal is coming out of the right side of the Vision

Tool Block

12

Since the height image data is calibrated, it is actually quite simple.

This means no matter if you are close to an object or far away, the number of pixels used to
show it is the same.

For this reason the Fixture tool requires only translation and rotation.

13

If we perform this fixturing step AFTER other tools have already been placed, then you may
have to reposition those tools just once more since they will receive the reposition
information from their current location and will be shifted.

Just open up those tools and reposition their region. When we execute the sequence, we
can see the region will continue to fall in the correct position.

14

15

Additional Tasks and Sequences can be added through right-clicking “Tasks” (for another
Task) or “Task” (for another sequence).

Multiple Tasks will run in parallel to each other. They could be used as a different path of
inspection for a given part.

Multiple Sequences will run in serial to each other – Sequence first, then Sequence1,
Sequence2…

If the sequence is renamed, there is no guarantee as to how it would run. For this
first release of Cognex Designer, it is suggested to use only one sequence per task.

16

Groups:

Multiple objects can be combined within a group. This will run the objects
“together” and the time for that group will be reported in the upper left
corner of the Group box.

Note: For Timing, the group us treated as one entity. That means that since
the left edge of the group is before the left edge of the Database, the entire
group will run first. Then the Database will get its next image and finally the
ToolBlock “BracketInspection” will run.

When placing object in a group, make sure the box is entirely around the
objects of interest. Otherwise they will not be part of the group.

Notes:
Notes can be created on the Sequence to detail information. It could be

used to explain the functionality of code or be created to dynamically give information
about part of the process.

Now:
Inserting the Now structure allows access to the current date and time

information of the system at a given point.

17

The parallel processing structure allows us to put a “box” around the processes that we
would like to run in parallel with each other. It will place each process on its own thread so
that execution time is reduced and the application will run faster. This allows the processing
of intensive applications to be optimized for fast execution.

Tip: Disable hyper-threading, as the system might perform the process in parallel, but on
the same physical core, hence negating any performance gains.

18

Allow users to create an embedded sequence to assist with organization and
modularization of the code. It will run serially as the left hand side of the SubSequence
object is tapped within the original sequence.

19

The ScriptBlock allows the user to write C# code to work upon the inputs given and to
create an output.
Each input name and type is defined. Also the Return type needs to be set.

You can only have a single return value. Its type can be:
• Boolean
• Byte[]
• Integer
• Double (Real)
• String
• Datetime
• Object
• VisionPro Image
• VisionPro Record

20

After the script block is created, the script can be edited. You must use C# when writing
code for the scripts. Then it is a matter of attaching values to the input and the result can
be seen on the output tag as a fly-over value.

After a user script is created, it can also be called programmatically.

button.enabled = MatchString(“ABA122”)
This would disable a button as the inputted value is not the expected value

21

22

